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Polymer chain statistics and universality I 

M Lax?, A J BarrettS and C DombOll 
t Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel 
$ Department of Mathematics, Royal Military College of Canada, Kingston, Ontario, 
Canada 
8 Department of Physics, Bar-Ilan University, Ramat Gan, Israel 

Reived 11 August 1977 

Abstract. A brief summary is given of the concept of universality in the theory of critical 
phenomena. The concept is applied to random walks and self-avoiding walks on lattices 
corresponding to the n = -2 and n = 0 universality classes. The Domb-Joyce model of a 
random walk on a lattice with a 6 function interaction of strength w is identified with 
crossover behaviour, w serving as a crossover parameter. Exact enumerations are under- 
taken of the mean-square end-to-end length (R:) for the Domb-Joyce model for a 
number of three-dimensional lattices. Using the smoothness postulate of Griffiths, esti- 
mates are obtained of the asymptotic behaviour of the expansion factor a’= ( R & ) / N  in 
the range 0.5 < w < 1. By combining these with exact vinal coefficients for small w the 
range is extended to w = 0. The two-parameter approximation which assumes that a’ is a 
function of wN”’ is satisfied with maximum errors of 2 or 3%. The two-parameter 
function which has been the subject of much discussion by polymer theorists is estimated 
and an empirical formula is proposed. 

1. Introduction 

There are a number of statistical averages associated with a polymer chain whose 
behaviour as a function of temperature and intramolecular forces help to characterise 
the size and shape of the chain. Well known examples are the mean-square end-to- 
end distance (I?;), higher moments of the end-to-end distance (I??), the mean- 
square radius of gyration (S;) ,  the correlation between two points of the chain, and 
various associated moments. These averages can be calculated with relative ease for a 
random chain, but when intramolecular forces are introduced there is an enormous 
increase in complexity. 

It has been usual in polymer theory to approximate the intramolecular forces by 
means of a pseudopotential, i.e. a 6-function interaction of appropriate strength (see 
e.g. Yamakawa 1971). If V ( r )  represents the intramolecular potential, the forces are 
replaced by -v6(Rij), where Rii is the distance between the ith and jth steps of the 
walk and 

v = I [ 1 - exp(-p V(r ) ) ]  d r  (p = l / k T ) .  (1) 

Little systematic work has been attempted to assess how good an approximation this 
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is, and we shall not pursue the point further here (recent publications raising this 
matter are Smith and Fleming 1975, Barrett 1976). We shall accept the pseudopo- 
tential approximation, so that all the above averages are functions of the two variables 
N and Y, and it will be our aim to find reliable methods of estimating these functions. 

In conventional polymer theory two approaches have been followed. The first is to 
derive closed-form approximations of self-consistent field type. The best known of 
these is the Flory formula for the expansion factor a2(= ( R L ) / N )  of a chain, 

a 5 -a 3 = - z  3J3 ( Z = ( $ ) ~ ’ ~ U N ’ ’ ~ ) .  
2 

However, there are at least a dozen closed formulae each claiming to be a valid 
approximation, and all differing from one another very significantly (see e.g. Domb 
and Barrett 1976). 

The second approach derives virial expansions in powers of the parameter z in (2) 
which are strictly valid only in the limit of N large and U small (the two-parameter 
approximation). Only a few terms of the expansion are available, and since we are 
interested in large N their region of usefulness is very limited. In fact, it has been 
demonstrated recently that the expansions are not convergent but divergent (Edwards 
1975, Oono 1975). 

To make progress in this confusing situation we shall draw on the experience of 
second-order phase transitions and critical phenomena where problems of a similar 
kind have been tackled effectively in recent years. Such transitions occur in lattice and 
continuum models with a variety of different types of interaction. One of the most 
important ideas to have emerged is that of ‘universality’-that certain important 
features of the behaviour are lattice independent in a given dimension, and others 
even model independent for a wide range of interactions. If such features can be 
identified calculations can be made for lattice models whose results will be valid for 
continuum models. Numerical methods can be pursued much more effectively for 
lattice models, and calculations for a number of lattices can be undertaken to check on 
the universality property. 

We shall suggest that a similar characterisation can be made of lattice and 
continuum models of polymer chains, and that many of the statistical averages 
mentioned above can be related to universal quantities. We shall then make use of 
lattice enumerations to provide new estimates of these statistical averages in the 
pseudopotential approximation. 

2. Universality in critical phenomena 

One of the most difficult problems in classical statistical mechanics is the condensation 
of a gas of molecules with intermolecular forces consisting of a hard-core repulsion 
and a short-range attraction. Particular interest centres on the critical point of the 
gas-liquid system and the detailed behaviour in its neighbourhood. Despite great 
formal progress in developing the virial series expansion, it was not possible to 
calculate enough terms to provide any reliable information on critical behaviour. 

In the 1950’s therefore interest turned to ‘lattice-gas’ models in which the mole- 
cules are constrained to occupy the sites of an arbitrary lattice. This model is 
mathematically identical with the Ising model of ferromagnetism, for which exact 
calculations are available of a number of properties in two dimensions. For lattice 
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models the discrete nature of the problem and the symmetry introduce great 
simplification, and enable virial expansions to be taken very much further than for 
continuum models. Using the known exact solutions as a check on numerical 
accuracy, it was then possible to assess the critical behaviour of a given lattice model 
with considerable confidence. 

Information on critical behaviour was at first assembled empirically; it was then 
noted that the data fitted into a simple pattern which could be described in terms of a 
scaling hypothesis. During the past five years a theoretical justification for this pattern 
has emerged. We shall summarise briefly the main conclusions; further details are 
available for example in Domb and Green (1974). 

The behaviour of thermodynamic functions near a critical or Curie point T, is 
described by certain characteristic critical exponents. For example the specific heat, 
CH, and initial susceptibility, xo, are given by 

and a and y are termed the high temperature exponents. It was first noted that these 
exponents depend on the dimension d of the model but not on the lattice structure in a 
given dimension. Further, an alternative magnetic interaction to the Ising model, the 
Heisenberg model, considered interacting classical vector spins in three dimensions, 
and this could readily be generalised to interacting vector spins in n dimensions. The 
next conjecture was that critical exponents depend only on the symmetry of the 
ordered state, which can be characterised by the integer n.  Finally it became clear 
from exact solutions for long-range forces that even in a given dimension an exponent 
will depend on the range of intermolecular forces, and a third parameter should be 
used to characterise this range. In our present discussion we will be concerned only 
with short-range forces; we can then say that any critical exponent depends only on d 
and n.  In a terminology introduced by Kadanoff (1971) we say that a particular pair of 
values of d and n defines a universality class. 

If scaling constants are introduced for each lattice universal functions can also be 
defined which characterise critical behaviour. For example, the magnetic equation of 
state in the critical region can be put in the form 

where to and ho vary from lattice to lattice but # is universal. Thus although the 
amplitudes A and C in (3) vary from lattice to lattice, they can be expressed in terms 
of to, ho and 4; hence if 4 is known they can be calculated for any lattice for which to 
and ho are known. 

Next the transition from one universality class to another was considered. If a 
simple cubic lattice has interactions J in the x and y directions and J' in the z 
direction, then as long as J' > 0 the critical exponents and functions correspond to 
d = 3. But when J' = 0 the system becomes two dimensional and there is a transition 
to d = 2 critical behaviour. The value J' = 0 is thus of particular significance; for small 
J' a scaling constant io can be introduced for a particular lattice, and the equation of 
state near J' = 0 covering the transition region can be put in the form 

M = F(joJ', toT, hoH). 

F is then called the crossover function from d = 2 to d = 3, and is also universal. 
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None of the above results has been established rigorously in the mathematical 
sense. But a mass of numerical data has been assembled to support them, as do 
theoretical arguments based on the concept of the renormalisation group (see e.g. 
Fisher 1974). 

3. Universality in random and self-avoiding walks 

The properties of a random walk on a lattice or in a continuum are well known, and 
we shall now reformulate them in terms of the universality concept. The mean-square 
end-to-end length is given by 

(R:) = N, (6) 
so that the exponent of N is the same for all lattices (and all dimensions) and is 
therefore universal. The mean-square radius of gyration is given by 

(S$) - iN  (7) 
for all lattices and dimensions; hence the factor for (S$) / (R$)  is also universal. 

The total number of random walks on a lattice of coordination number q is 

(8) N cN=q , 
which is not universal since q is lattice dependent. The total number at the origin after 
N steps is 

u N - B ~ ~ N - ~ ” .  (9) 
This again is not universal although the exponent of N is universal. However, cN and 
U N  cannot really be defined for a continuum walk, and if we wish to define a quantity 
which can have significance both for a lattice and a continuum it is better to use 

u N / c N   AN-^/^. (10) 

If we consider the shape of the walk f(u) after N steps (U = R / ( R N ) )  we obtain a 
universal function (Domb 1971) 

A self-avoiding walk is a random walk on a lattice which is not allowed to visit any 
point more than once. The self-avoidance condition is extremely difficult to deal with 
mathematically and there are few rigorous results. However, exact calculations can be 
undertaken for a considerable range of N, and Monte Carlo enumerations can be set 
up without too much difficulty. As a result the asymptotic behaviour of self-avoiding 
walks can be conjectured with considerable confidence (see e.g. Domb 1969). 

The exponents for self-avoiding walks are completely different from their coun- 
terparts for random walks; hence we can describe them as belonging to a different 
universality class. Instead of (6) we now have 

(R$)  - DN? (12) 

(S&)/(R$) - 8 (13) 

where y is universal, and approximately equals 9 in two dimensions, and 4 in three 
dimensions. Instead of (7) we have 
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where e is no longer a. Numerical estimates suggest that e - 0.140 in two dimensions 
and 0-155 in three dimensions. Domb and Hioe (1969) suggest that 8 might also be 
universal; the same suggestion in relation to three-dimensional lattices has been made 
previously by Windwer (1965); we shall see later how this fits in with the general 
universality pattern which we shall propose. 

Instead of (8) we now have 

CN - E ~ ~ N ~  (14) 

where g is universal and approximately equal to 4 in two dimensions, and $ in three 
dimensions; CL is known as the connective constant and is lattice dependent and not 
universal. Instead of (9) we have 

UN - F ~ ~ N - ~  (15) 

where h is universal and approximately equal to $ in two dimensions and in three 
dimensions. We cannot define a self-avoiding walk for a continuum, but a useful 
lattice-independent quantity which might have a continuum interpretation is 

uN/cN - GN-"'. (16) 

The shape of a self-avoiding walk gives rise to a universal function; instead of (1 1) 
we have 

f ( u ) - ~ u '  exp (-Ku') (17) 

where S = 4  in two dimensions and 2 in three dimensions (the value of 4 is not very 
well established). 

The exponents introduced in this section are related to N whilst those of the 
previous section (equation (3)) are related to T- T,. But in fact every (T- Tc)- 
exponent for an interacting model is uniquely related to an N-exponent by means of a 
partition function as follows. For any function of N, f(N), we define 4 ( T )  as 

For example for CN in (14), 

Using this relationship we can define an 'interaction' model corresponding to 
self-avoiding and random walks, and they can be fitted into the d, n classification of 
the previous section. De Gennes (1972) showed that self-avoiding walks correspond 
to n = 0; Balian and Toulouse (1973) and Fisher (1973) showed that random walks 
correspond to n = -2. 

4. The DombJoyce model 

A lattice model which parallels the pseudopotential continuum model was investi- 
gated by Domb and Joyce (1972). The delta function S(rij) is replaced by a discrete 
Kronecker function Sii where i and j are the lattice sites occupied by two points of the 
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walk; any configuration of the walk is then weighted by the factor 

fl (1 -w&) ,  
pairs i.j 

where w plays a role analogous to v in equation (I). 
Domb and Joyce developed a virial expansion for this model as a power series in w 

which is clearly analytic for finite N. The formalism applies equally well to a 
continuum model, the change to a different lattice or to a continuum being achieved 
by changing a generating function. 

One particularly important feature of the model is the behaviour when w = 1; all 
configurations in which a site is occupied more than once then have zero weighting, 
from equation (20), and hence the result is a self-avoiding walk on the lattice. Thus, 
the model serves as a transition between random and self-avoiding walks, i.e. between 
the n = -2 and n = 0 universality classes. Domb and Joyce argued that the value of 
the parameter w at which the change in universality class takes place is w = 0. Thus 
for any value of w > 0 critical exponents and functions should be those of a self- 
avoiding walk. 

When N becomes large and w small, N’/*w remaining finite, the two-parameter 
function is approached, and the virial series is no longer convergent but asymptotic. 
Domb et a1 (1973) noted that in this limit (with the exception of a scaling constant ho 
for each lattice) the first three virial coefficients are identical for all lattices and for a 
continuum. They suggested that the same property would hold for &ial coefficients 
to any order. One would then have for the expansion factor of a chain, 

a2  = ( R L ) / N  - w, ( z  = hON’’*w) (21) 

and @ ( z )  is the universal crossover function from n = -2 to n = 0. This suggestion was 
tested numerically for standard three-dimensional lattices and particular values of z 
(Domb 1974, Domb and Barrett 1976) and the results were in satisfactory agreement 
with (21). 

We should expect the behaviour of (SL) to be similar to that of (RL), and hence by 
analogy with (21) 

at = 6(S&)/N - (LS(z). (22) 
The Domb-Joyce model enables us to check on the accuracy of the two-parameter 

function as an approximation for finite N and w, and to estimate two-parameter 
functions like + ( z )  in (21). Our method is to enumerate (RL) exactly from different 
lattices for finite N and a variety of w between 0 and 1. The hypothesis of universality 
enables us to conjecture an asymptotic form in the neighbourhood of w = 1 (say 
w = 0.5 to l ) ,  and near w = 0 we use a power series expansion in w for finite N. We 
test how well the (N, w) data can be represented by a single function of N’/’w, and 
since the different lattices have different values of ho in (21), we can examine different 
regions of z .  

In principle we can calculate the two-parameter function for any statistical average 
for which self-avoiding walk data and asymptotic conjectures are available. Domb 
and Hioe (1969) calculated a number of other moments analogous to (Ss) for 
self-avoiding walks, for example (a:) the mean-square distance of an element of the 
chain from the end-part of the chain. They used these moments to construct an 
estimate of the pair correlation function for pairs of points along the chain. The same 
enumerations have been undertaken by one of us (ML) for the Domb-Joyce model, 
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but we shall defer a detailed study and analysis to a subsequent paper. In the present 
paper we shall concentrate on the function a* which has been the subject of much 
discussion by polymer theorists. 

The numerical calculations are as follows. We first enumerate C N ~ ,  the number of 
walks with k contacts, by the program described in the appendix. Typical results for 
the simple (sc) lattice with N = 10 are shown in table 1. We then define a partition 
function for the Domb-Joyce model by 

c N ( w ) = c  C M U k  (U = 1 - w). 
k 

Table 1. Typical enumerations for the Domb-Joyce model ( S C  lattice, N = 10). 

k r2CM,(r )  UNk c m ( r )  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

24692980 
32907824 
22659900 
9397560 
6587668 
2253008 
1032576 
723608 
250684 
157752 
56304 
19800 
23720 
9040 
3312 

0 
1104 

96 
0 
0 

24 

48240 
142560 
228360 
191520 
195150 
143040 
66900 
74040 
32550 
24720 

8880 
7200 
6090 
2400 
600 

0 
300 

0 
0 
0 
6 

8809878 
15775476 
144 19194 
7903212 
606 16 14 
2918988 
1327548 
1089816 
447546 
276636 
124452 
49764 
55476 
22680 

8280 
0 

2760 
240 

0 
0 

60 

The value U = 0 (w = 1) corresponds to a self-avoiding walk, and U = 1 (w = 0) to a 
random walk. 

For other properties of interest, we define corresponding functions. For polygonal 
closure we define 

uhr(w)=C U N k U k  
k 

and consider the asymptotic behaviour of 

which must vary between the value 
given by (16) when w = 1. 

number of walks with contacts which terminate at r and define the second moment 

given by (10) when w = 0, and GN-"' 

To investigate the mean-square end-to-end distance we enumerate CNk (r) as the 

c?(w)=C k r  U k  r2cNk(r). (26) 
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(RL(w) )  is then given for the model by 

and the expansion factor a 2 ( w )  by 

a 2 ( w )  = (R&(w)) /N.  

The asymptotic value varies from 1 when w = 0 (equation (6)) to DN7-l (equation 
(12)) when w = 1. 

5. Expansion factor 

The expansion factor a2 defined in (21) can be developed as a power series in w for 
finite N, 

~ 1 ~ ( ~ , N ) = l + k i w + k 2 ~ ' + k 3 ~ ~ + .  . . (29) 

where the coefficients kr are evaluated in terms of the number of returns to the origin, 
rN, in a random walk. The formula applies equally to lattice and continuum walks. 
Calculations of the first three coefficients have been undertaken for N S 5 0  and 
asymptotic formulae have been derived (Domb and Joyce 1972, Barrett 1975). In 
general 

r . .  (30) k, -AA0)N1/2+A!1)N(r-1)/2+A(2)N(r-2)/2+. 

and if the A: term only is retained, the two-parameter approximation results, the 
series in N'/'W being asymptotic. 

When w = 1 lattice models give rise to a self-avoiding walk whose properties have 
been investigated with considerable precision (Domb 1969). It is found that the 
numerical data can be well fitted by the formula 

'(1, N ) -  N "'(CO + Do/N) .  (31) 

The smoothness postulate (Griffiths 1970) then suggests that in the neighbourhood of 
w = 1,  one might expect the data to be fitted by the formula 

a '(w, N )  - N'/ ' (C(w)+ D ( w ) / N ) .  (32) 

We have found that formula (32) provides a reasonable fit to the numerical data 
for values of w between 0.5 and 1.0, and the estimates of C(w) and D ( w )  for the FCC, 
BCC, sc and diamond lattices are reproduced in table 2. We think that the estimates of 
C ( w )  are reliable (i.e. errors not more than a few per cent) even down to w = 0.5, but 
that the estimates of D ( w )  become more speculative in this region; however, the 
general pattern of behaviour represented by the D ( w  ) is reasonably parallel to the 
true pattern. For values of w less than 0-5, additional terms are necessary in (32), and 
it is more convenient to cover this region by interpolation. We fit the first two 
coefficients kl and kz in (30) at w = 0, and the values of CY' from 0.5 to 1.0 and 
interpolate so as to join smoothly at a = 0-5 .  

The results for the lattice are presented in figure l (a)  where curves of a' as a 
function of w are plotted for various values of N. Lines of z =constant are also 
plotted, and if the two-parameter approximations were exactly satisfied these lines 
would be horizontal. We find that the deviations from horizontal are small amounting 
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Table 2. Estimates of C(w) and D ( w )  ( a Z - N ” 5 [ C ( w ) + ( D ( w ) / N ) ] .  

1.0 0.9 0.8 0.7 0.6 0.5 

FCC C ( W )  0.920 0.879 0.836 0.791 0.747 0.203 
D ( w )  0,037 0.123 0.236 0.362 0.498 0.630 

BCC C ( W )  0.961 0.915 0.868 0.822 0.777 0.231 
C ( W )  0.019 0.114 0.216 0.326 0.438 0.559 

sc C ( W )  1.068 1.013 0.959 0.904 0.852 0.800 
D(w)  -0.074 0.0 0.085 0.190 0.296 0.409 

Diamond C ( W )  1.30 1.22 1.14 1.07 0,996 0.927 
D(w)  -0.294 -0.207 -0.139 -0.056 0.055 0.203 

only to one or two per cent and hence the two-parameter approximation is well 
satisfied in the whole region. 

Similar results are obtained for the FCC lattice (figure l(b)), the BCC lattice (figure 
l(c)) and the diamond lattice (figure l ( d ) ) .  In all cases the two-parameter function 
provides a good fit, and the scaling from one lattice to another involves an error too 
small to be represented in graphical plotting on the scale chosen. We can therefore 
regard these data as a numerical confirmation of the applicability of the universality 
hypothesis. 

Some examples of the difference between different three-dimensional lattices, and 
their convergence to the two-parameter function for large N and small w have been 
given in previous publications (Domb 1974, Domb and Barrett 1976). 

6. Scaling hypothesis and scaling function 

In the two-parameter approximation, the virial series for the expansion factor g(z)  in 
(21 )  is 

$(,?)E 1 +biz +b2Z2+ b 3 Z 3 + .  . . (33) 

b3 = 6,29688. (34) 

with the following numerical values of the coefficients (Barrett 1975): 
b l = j ,  b - a  2-277~-5=-2.075385, 16 

These values have been calculated by a new method; the first two coefficients are 
in the agreement with previous calculations for a continuum model (Yamakawa 1971) 
whilst the third differs by a few per cent. Details of the calculations have been given in 
Barrett (1975), and will be published shortly. As noted previously (equation (21))  

z = hoN1/’w (35) 
the value of ho being given by 

where g is the volume per site of the lattice and a the length of a step of the walk. For 
the sc, BCC and FCC lattices g / a 3  has the values 1, 4/33’2, 2-’j2 respectively; for the 
diamond lattice with two sites per unit cell the corresponding g / a 3  is 8/33/2. For the 
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Gaussian continuum model gw is replaced by the excluded volume v given by the 
binary integral (1). 

The asymptotic form (32) for a 2 ( w ,  N )  corresponds to an asymptotic form for 4 ( z )  
of the form 

+(z)-  B ~ Z * / ~ ( I  + e / z 2 ) .  (37) 
Hence in the region where the scaling hypothesis is valid (i.e. for sufficiently small w )  
we should have from (35) 

(38) 

(39) 

2 / 5  2 / 5  C ( w ) = B l h o  w , 

D ( w ) / C (  w ) = e/ h i w 2 .  

It is difficult to say a priori how small w must be for these scaling relations to be 
satisfied. In practice we find that relation (38) fits with deviations of only a few per 
cent from w = 0.5 to w = 1.0, as illustrated in table 3(a). But relation (39), which 
represents a correction term, can only be used at w = 0.5, 0.6, and then provides an 
order of magnitude estimate of 8. Nevertheless, it is interesting and significant that 
the values of D ( w ) ,  which are apparently arbitrary at w = 1.0 for different lattices, 
move towards the regular pattern of behaviour represented by (39) as w becomes 
sufficiently small. We have made the following estimates for the universal parameters 
B1 and 8: 

B1= 1.64 e = 0.013. (40) 
To fit the data given by (33), (34), (37), and (40) we shall follow the method used 

previously (Domb and Barrett 1976), taking an empirical form 

I+bm = @(z) .  (41) 
@ ( z )  is a polynomial whose lowest terms are chosen to fit (33) and (34), and whose 
highest terms together with the exponent m are chosen to fit the asymptotic form 
given by (37) and (40). We find that 

$ ” =  1 +202 + 1 5 5 . 5 4 ~ ~ + 5 9 1 * 8 6 ~ ~ + 3 2 5 ~ ~ +  1 6 7 0 ~ ~ .  (42) 
The coefficient of z5 is exactly zero in view of assumption (32). 

Table 3. Tests of scaling. 

( a )  C (  w ) / h Y  w *I5 

0.9 0.8 0.7 0.6 0.5 

FCC 1.647 1.641 1.636 1.633 1.641 1.659 
BCC 1.663 1.652 1.642 1.641 1.649 1.667 
sc 1.664 1.647 1.633 1.625 1.628 1.645 
Diamond 1.70 1.67 1.64 1.62 1.60 1.59 

( b )  D ( w ) h b 2 / C ( w )  

w 0.6 0.5 
~ ~ _ _ _ _ _  

FCC 0.0131 0.0122 
BCC 0,0123 0.0131 
sc 0.0136 0.0139 
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The following estimates were given in a previous publication 

G5 = l+yz +47rz2, (43) 

based on one term of the virial series and one asymptotic coefficient from self- 
avoiding walks; 

~ ‘ s = [ l + 1 0 z + ( ~ + ~ ) z z + 8 3 ’ 2 z 3 ] z ,  (44) 

based on three terms of the vinal series and one asymptotic coefficient from self- 
avoiding walks. The numerical differences between (42), (43) and (44) are quite small, 
but we feel that (42) makes proper use of all the numerical information available. If 
more terms of the virial series or the asymptotic series should become available, 
formula (41) can easily be used to incorporate them. The major fault of formula (42) 
is that it does not have the correct analytic behaviour at z = 0 since it gives rise to a 
convergent rather than a divergent series in z ;  but we feel that this is a minor point. 

7. Deviations from scaling--correction terms 

The scaling formula of the previous section is strictly valid only for large N and small 
w, and a study of table 2 shows that in the neighbourhood of w = 1 the term D(w)  
shows significant deviations from scaling for the different lattices. It is of interest to 
examine the nature of these deviations, and if we assume that formula (30) is valid for 
all r we can write 

a2(N,  w ) =  *(t)+N-”2*l(z)+N-’*z(z)+. . . . (45) 

The terms other than * ( z )  will now be lattice dependent; they can be evaluated 
without difficulty for small t from the virial series. 

For large z in order to comply with equation (31) (which does not scale exactly 
from lattice to lattice) it is clear that $l(z) must have a dominant term of order z ” ~ ,  
&(z) of order z12’s and so on; the contributions of all these dominant terms sum up to 
give Co. Current data on asymptotic behaviour of self-avoiding walks can give an 
order of magnitude estimate of the first correction term Gl(z). 
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Appendix 

The program for the exact enumeration was written in FORTRAN IV and comprised 
seven routines (the main program and six subroutines) listed below: 

1. Main 
2. Subroutine LIST 
3. Subroutine STEP 
4. Subroutine COLLID 
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5 .  Subroutine PROPTY 
6. Subroutine CHECK 
7.  Subroutine RESULT 

The function of each routine is briefly described below: 

1 .  Main The main program initialises all parameters and calls subroutine LIST. 

2. Subroutine LrsT This routine defines the step vectors to be used for the enumera- 
tion. For the four lattices studied these vectors are as follows. 

Diamond lattice 
Set 1: (1, 1, I); (1, i, i); (i, 1, i); (i, i, 1) 
Set 2: (i, i, I); (i, I ,  1); (1, i, 1); (1, 1, i). 

(1,0, 0); (i, 0,oh (o , i ,  0); ( 0 , ~  0); (o,o,i) ;  (o,o, 1) 

(1, 1, 1); (I, 1, i); (1, i, I); (1, i, i); (i, 1, 1); (i, 1, i); (i, i, I); (i, i, i) 

(0, 1, 1); (0, 1, I); (0, i, 7); (LO, 1); ( L O ,  i); ( L o ,  1); (i, 0, i); (1, LO); (I, i, 0); 
(i,1,0); (i, Lo) ;  @,I, 1) 

The odd steps are chosen from set 1, the even steps from set 2. 

Simple cubic lattice 

Body -centred cubic lattice 

Face-centred cubic lattice 

Control returns to the main which calls subroutine STEP. 

3 .  Subroutine STEP Adds step vectors, computes present location of walk, calls 
subroutine COLLID. 

4. Subroutine COLLID Checks for intersections between newest point and all previous 
points. If walk has reached desired length calls subroutine PROPTY. 

5 .  Subroutine PROFTY Computes configurational properties of individual chains and 
stores the results for averaging when program finishes. Returns control to colloid 
which calls subroutine CHECK. 

6 .  Subroutine CHECK This routine decides whether or not to continue the enumera- 
tion, by checking the number of step vectors used at each step in the walk. It ensures 
that all permutations are enumerated. If no possibilities are left subroutine RESULT is 
called, otherwise control is returned to subroutine COLLID, which, if enumeration is 
complete returns control to MAIN which terminates JOB. 

7. Subroutine RESULT Computes averages and prints all necessary information. 
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